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ABSTRACT: In large scale Earth System Models (ESMs) used to study climate processes, surface

heterogeneity that is sub-grid to the larger atmospheric grid is often represented by a number of

land tiles, effectively providing a higher resolution land surface to a coarser resolution overlying

atmosphere. ESMs, however, average the surface fluxes and other surface characteristics before

they are communicated to the atmosphere, ignoring the affect that this variability can have on the

atmosphere. In this study, we examine the impact of this flux averaging through 257 2-day summer

WRF simulations over the Continental United States (CONUS) at 3km resolution, including runs

where the surface fluxes and temperature are homogenized at 60 km prior to communication

to the overlying atmosphere. Results show large increases (up to 200mm +) in precipitation in

moisture limited regions of CONUS, a persistent increase in precipitation bias when compared to

observations, and a near universal increase in evaporative fraction. Changes are most significant

where moist areas (i.e. water bodies) are averaged with dry areas as the feedback between

atmospheric moisture concentrations and the land are weakened when that moisture flux is more

spatially distributed through homogenization. Results also show a significant decline in mesoscale

flow activity within the atmospheric boundary layer, which in energy limited regions may cause

the observed decreases in precipitation due to less frequent convective initiation. Overall, results

indicate that flux averaging applied in large scale models can have unintended consequences by

neglecting the heterogeneous imprint of the surface on the atmosphere.
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SIGNIFICANCE STATEMENT: This work examines what happens when higher resolution in-25

formation from the land surface is averaged and homogenized before being communicated to the26

atmosphere in coarse-resolution models such as climate models. Results show that this homoge-27

nization can yield significant changes (up to 100% increase) in precipitation in some regions. The28

most dramatic changes tend to appear when wet areas, including lakes and coastlines, are averaged29

with the land. Many climate models average ocean and land in atmospheric exchange, which may30

lead to errors in the water cycle and long term climate prediction. Significant changes to mesoscale31

atmospheric flows are also observed which may impact convective initiation, however more work32

is encouraged to assess this aspect of atmospheric impact.33

1. Introduction34

Weather and climate prediction schemes increasingly seek to represent the complexity of het-35

erogeneous land surfaces and their connection to the atmosphere. How well this heterogeneous36

land-atmosphere coupling is represented can have significant impacts on accurate representation37

of local and global water and energy cycles. The complexity of the land surface comes from a38

variety of state variables and landscape characteristics that directly impact these cycles, including39

vegetation type, vegetation density, soil texture (Chaney et al. 2019; Xu et al. 2023), soil moisture,40

groundwater,(Barlage et al. 2021) topography, and surface temperature (Koch et al. 2017; Fisher41

and Koven 2020). Many of these characteristics vary in space at local (1-100 m) (Vergopolan et al.42

2022) and regional scales (1 - 100 km) and in time ranging from minutes to decades. The spa-43

tiotemporal variability of these variables has a complex and nonlinear impact on the global system44

(Santanello et al. 2018; Jung et al. 2011). Modeling work has shown that significant differences45

occur in land surface state variables with even moderate levels of homogenization approaching46

local scales (Torres-Rojas et al. 2022; Zhao and Li 2015). Understanding the impact of this het-47

erogeneity on the atmosphere, and how we model it, is critical for accurate model forecasts that48

tackle complex, multi-scale, modern, challenges in weather and climate.49

The land surface affects the atmosphere most directly through the surface fluxes of moisture (latent50

heat flux) and heat (sensible heat flux). The organization of these fluxes, and other variables, can51

have significant impacts, which have long been an area of interest in boundary layer meteorology and52
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atmospheric sciences (Bou-Zeid et al. 2020). While observational studies exploring heterogeneous53

surface-atmosphere do exist, most of the previous work has been through high resolution large-54

eddy simulations (LES). These studies show that surface heterogeneity, particularly in moisture55

and surface heating, can cause mesoscale and sub-mesoscale atmospheric response, including56

secondary circulations (van Heerwaarden et al. 2014; Hadfield et al. 1991; Rochetin et al. 2017;57

Simon et al. 2021; Zhang et al. 2023), roll structures across the terrain (Weaver 2004), sea and58

lake breeze effects (Miller et al. 2003; Crosman and Horel 2010; Birch et al. 2015; Hock et al.59

2022), breeze circulations over land (Segal and Arritt 1992; Rochetin et al. 2017; Lee et al. 2019;60

Avissar and Liu 1996), internal equilibrium layers (Bou-Zeid et al. 2020), and an overall increase61

in the sub-mesoscale and mesoscale kinetic energy (MsKE) and activity of the boundary layer62

(Simon et al. 2021; Weaver et al. 2002; Skamarock et al. 2014; Zhang et al. 2010). These changes63

to boundary layer dynamics also cause changes to patterns of convection and precipitation, with64

studies showing earlier initiation of deep convection (Lee et al. 2019; Hock et al. 2022), increased65

cloud production (Garcia-Carreras et al. 2011), changes in cloud patterns (Avissar and Liu 1996;66

Rochetin et al. 2017), as well as increases in precipitation (Guillod et al. 2015; Avissar and Liu67

1996; Lee et al. 2019; Birch et al. 2015; Barlage et al. 2021). The literature has also shown that many68

of these atmospheric responses to surface heterogeneity scale with the magnitude and structure of69

observed variability (Lee et al. 2019; Han et al. 2019; Hadfield et al. 1991; van Heerwaarden et al.70

2014; Rochetin et al. 2017).71

Regional and global models for weather and climate vary dramatically in how they represent small72

(sub-grid) scale heterogeneity in the surface, the atmosphere and in the coupling between the two.73

Land surface models (LSM) are typically used to provide surface information including fluxes of74

heat and moisture to coupled atmospheric models in numerical weather prediction schemes (NWP)75

and Earth System Models (ESMs). LSMs have a long history of development focused on better76

representing land surface complexity, often through mosaic or tiling schemes. These schemes77

work by dividing the traditional atmospheric grid into multiple sub-grid tiles near the surface,78

partitioned according to terrain characteristics, land cover, and plant functional type (Chaney79

et al. 2021; Bonan et al. 2002; Ducharne et al. 2000). Tiling schemes have shown significant80

improvements in accurate prediction of surface fluxes as compared to using a singular LSM tile per81

atmospheric grid cell (Toll et al. 2002; Manrique-Suñén et al. 2013; Zhao and Li 2015), however82
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there is still substantial uncertainty from the coupling of a heterogeneous surface to the overlying83

atmosphere . Most modern large scale models, such as ESMs used to study climate processes, apply84

a simple homogenization where an area weighted average is computed from the fluxes on each85

sub-grid tile (Danabasoglu et al. 2020; Golaz et al. 2022; Held et al. 2019) assuming that the lowest86

atmospheric model level is a sufficient ”blending height” for flux homogenization. The blending87

height assumption can introduce errors (De Vrese and Hagemann 2016; Bou-Zeid et al. 2020) even88

in LSMs run offline from a coupled atmosphere (Manrique-Suñén et al. 2013). In some models,89

including NOAA-GFDL’s Earth system Model Version 4 (ESM4) (Dunne et al. 2020; Held et al.90

2019) and the US Department of Energy’s Energy Exascale Earth System Model (E3SM) (Golaz91

et al. 2022), the homogenization not only occurs over the land, but surface fluxes from ocean and92

other open water tiles are homogenized with land surface tiles to produce one flux to the overlying93

atmospheric grid. In other models, such as the NCAR Community Earth System Model (CESM)94

(Danabasoglu et al. 2020), the land and ocean are maintained separately, however sub-grid lakes are95

still homogenized with the surrounding land. Either form of homogenization effectively eliminates96

the possibility of impactful, complex land-atmosphere interactions such as heterogeneity driven97

rolls and circulations, from occurring, thereby causing potential errors in convective initiation,98

cloud development and precipitation. It is especially concerning when landscapes with high99

flux gradients, such as coastal regions in ESM4 and E3SM, lakes and mountainous terrain, see100

significant gradient reduction through homogenization. There have been some attempts to develop101

schemes that account for some of this observed heterogeneity, including allowing the inter-tile heat102

and moisture variance at the surface to change atmospheric variances (Huang et al. 2022), the use of103

multiple sub-grid columns to allow for parameterized circulations (Naumann et al. 2019; Waterman104

et al. 2024), blended atmospheric tiles in the lower boundary layer to bypass the false blending105

height idea of homogenization (De Vrese et al. 2016), and multi-plume mass flux additions to106

boundary layer schemes (Sušelj et al. 2013; Witte et al. 2022). These methods, however, often107

only account for some heterogeneous land-atmosphere interactions and/or have yet to be broadly108

applied.109

Given the changes heterogeneity can cause to convection and precipitation in LES studies that110

cover ESM grid cell extents, and the broad use of simple surface heterogeneity homogenization in111

ESMs, it is important to understand how the scale of surface heterogeneity, or the scale of surface112

5



homogenization, impacts the atmosphere at regional, continental and global extents examined in113

ESMs. This is especially critical as some ESMs move to finer, even convective resolving scales114

(Satoh et al. 2019). A large number of LES studies have examined how surface homogenization115

impacts the atmosphere (van Heerwaarden et al. 2014; Hadfield et al. 1991; Rochetin et al. 2017;116

Simon et al. 2021; Zhang et al. 2023; Lee et al. 2019; Garcia-Carreras et al. 2011). These studies,117

however, are often limited by idealized terrain, unrealistic periodic boundary conditions, one-way118

coupling, and/or relatively small spatial and temporal extent compared to those applied in NWP119

and ESMs. Other studies using coarser resolution models have explored homogenization as well.120

These studies include offline LSM analysis (Manrique-Suñén et al. 2013; Toll et al. 2002), coupled121

simulations that vary the resolution of land surface properties or specific physics representation122

(i.e. groundwater) fed into LSMs (Zhang et al. 2010; Zheng et al. 2021; Knist et al. 2020; Barlage123

et al. 2021) and studies where atmospheric and land grid model resolutions are scaled together124

(Iorio et al. 2004; Hohenegger and Schar 2007; Hock et al. 2022). These studies show a variety of125

impacts of homogenization, including significant changes in domain wide fluxes, precipitation and126

cloud formation, similar to those identified in local LES studies. There is a crucial limitation of127

these studies, however, for comparison and applications with ESMs. ESMs with tiling schemes run128

the LSM at an effectively higher resolution, with higher resolution land surface properties defining129

the grid, and then average the resulting fluxes to an atmospheric grid rather than running the LSM130

at the same or coarser resolution than the resolution of atmospheric coupling. ESMs, also, cannot131

be used to study heterogeneous land-atmosphere coupling as the heterogeneous dynamics are not132

resolved at the coarse ESM grid scale. To fully understand the impact of the flux averaging and133

reduced heterogeneity in ESM land-atmosphere coupling, we need a to compare over many cases,134

for large domains, with averaging scales similar to ESMs, and, critically, with the most significant135

heterogeneity-induced atmospheric phenomena resolved.136

2. Methods137

a. Simulation Description138

We apply a flux homogenization scheme to two different series of simulations. All cases use139

the Weather Research and Forecasting model (WRF) run at a 3km resolution. For homogenized140

simulations, however, the surface fluxes (Latent Heat (𝐿𝐻) and Sensible Heat (𝐻) flux) as well141
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Fig. 1. Illustration showing the homogenization method applied in the WRF simulations. At each time step,

the 3km LSM is averaged to some averaging scale before fluxes and surface temperature are communicated to

the atmosphere

148

149

150

as the surface temperature are averaged to the homogenization scale before being communicated142

from the LSM to the atmosphere. That is, fluxes and surface temperature are computed on a 3 km143

grid, averaged to the homogenization scale, then passed at this coarser scale to the first layer of the144

3km atmosphere for every timestep in the simulation as shown in figure 1. It is important to note145

that no other surface characteristics, including topography, are homogenized. The following two146

series of simulations are run taking advantage of this homogenization method.147

1) Scaling of Homogenization Runs151

We use a smaller set of WRF simulations, configuration detailed in section 2b, to provide a152

basic understanding of how the chosen homogenization scale impacts the simulation. Seven, 48153

hour simulations are conducted covering CONUS, northern Mexico and Southern Canada from154

2023-07-07 9:00 UTC to 2023-07-09 9:00 UTC at homogenization scales of 3 km (HET), 6 km,155

12 km, 15 km, 30 km, 60 km, and 120 km. WRF code modification for homogenization at these156

scales are included in the code repository (Waterman 2024). These scales of homogenization are157

selected to cover a wide range of scales, and are somewhat limited by the parallelization of WRF158

code, which restricts homogenization scales to defined multiples of the grid space allocated to each159

process by WRF and MPI.160
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Table 1. WRF simulation grid variables, timestep, and physics options

Grid Extent 1560 x 1040 x 51

Grid Resolution 3 km x 3 km x Stretched

Timestep Dynamic (∼15s)

Microphysics Thompson Aerosol-Aware (Thompson and Eidhammer 2014)

Radiation Rapid Radiative Transfer Model (RRTMG) (Iacono et al. 2008)

PBL and Surface Layer Mellor-Yamada Nakanishi and Niino Level 2.5 (MYNN2) (Nakanishi and Niino 2009; Olson et al. 2019)

Land Surface Model Rapid Update Cycle LSM (RUC) (Smirnova et al. 2016)

2) Summer Analysis Runs161

A much larger series of simulations are used to evaluate changes in the statistics of rainfall162

and convection more broadly. Two simulations, one that is not homogenized (3 km, HET) and163

one homogenized at 60 km (HMG), are run for each simulation day. 48 hour HET and HMG164

simulations are run for every day of June, July and August in the summers of 2021, 2022 and 2023165

with most analysis restricted to the second 24 hour period of the simulations. A small number of166

days in each year were excluded from analysis due to data corruption or model error resulting in a167

total of 257 HET and HMG simulation days.168

b. WRF model configuration169

This work uses WRF model version 4.3 (Skamarock et al. 2021) for all simulations, with hourly170

output retained for analysis. Model is configured similarly to the operational High Resolution171

Rapid Refresh (HRRR) NWP scheme which is based on WRF (Dowell et al. 2022). A summary172

of the chosen configuration and physics options are outlined in table 1. Additional details can be173

found in the namelist files included in the code repository (Waterman 2024). HRRR data is used174

to provide lateral boundary conditions and initial conditions for each model run.175

c. Multi-Source Weighted-Ensemble Precipitation (MSWEP)176

To properly evaluate which case, HET or HMG, best reproduces expected patterns of precipita-177

tion, we leverage the Multi-Source Weighted-Ensemble Precipitation dataset (MSWEP). MSWEP178

provides three hourly global precipitation at 0.1deg resolution (∼10km) by merging a large number179

of gauge based datasets, with satellite data and global reanalysis. The resulting fields are then bias180
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corrected with river discharge observations (Beck et al. 2019). MSWEP was selected for compari-181

son due to its complete coverage of North America and its comparatively high spatial and temporal182

resolutions.183

3. Results184

a. Surface Flux Impact of Homogenization185

The homogenization scheme has a variety of direct and indirect consequences. Figure 2 shows186

the instantaneous consequences of the homogenization for one timestep of the scaling simulations.187

Homogenized fields yield especially significant changes near coastlines and in mountainous regions188

where sharp gradients occur in the original fields. The fields also shift away from the extreme189

values, as would be expected with any homogenization.190

To provide a more quantitative representation of the loss of spatial information due to a 60 km191

homogenization, we compute the spatial standard deviation of the 60 km homogenization areas192

across the 3km domain as shown in figure 3a and 3b. This figure shows the mean of the variability193

across all three summers, representing the information lost by homogenization. A significant loss194

of information is shown for both sensible and latent heat flux across much of CONUS, especially in195

the western Gulf Coast into Texas, Mid-Atlantic Coast, the Great Lakes region, Pacific Northwest,196

the Central Valley of California and the mountain Southwest including the Sierra Madre Occidental197

in western Mexico. Notably, latent and sensible heat flux differ in observed heterogeneity between198

the East and West coast, with the entire West coast having large information loss in H but lower199

information loss in LH, whereas the East Coast has large information loss in LH and low information200

loss in H, likely due to the significant difference in ocean temperature between the cool West Coast201

and warm East Coast.202

The coefficient of variation, defined as 𝐶𝑉 =
𝜎𝑋

𝜇𝑋
, where 𝜎𝑋 and 𝜇𝑋 are the 60 km standard205

deviation and mean respectively for flux 𝑋 , is used to show how the scale of information loss206

compares with the mean in figure 3c and 3d. Values greater than one generally indicate that the207

variability loss is more significant than the mean, and values below indicate that it is less significant208

than the mean. Through this analysis, clearer regions of interest appear. In the dry Southwest, in209

particular, the loss of LH information is much greater than the observed flux. Most of the Eastern210

United states, by contrast, has observed information loss significantly below the mean for LH. H,211
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Fig. 2. Comparison of the 3km sensible heat flux (H) fields before (left) and after (right) 60km averaging for

2023-07-08 at 18:00 UTC.

203

204

Fig. 3. On the left, spatial standard deviation of the 3km simulation computed at 60km and averaged over JJA

2021,2022 and 2023 for sensible heat flux (a) and latent heat flux (b). On the right, the coefficient of variation

for the same fields in (c) and (d).

215

216

217

however, largely shows the opposite with information loss on the order of the mean in the Southeast,212

and significantly above the mean along the Gulf Coast and West Coast. This is particularly notable213

due to the relatively high mean sensible heat flux in this region.214

There are a few regions where the coefficient of variation is large for both the sensible and latent218

heat flux, and are therefore likely candidates for observed changes in atmospheric impact. The219

Great Lakes region as a whole, up to the St. Lawrence River, shows significant information loss220
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in both fields, especially in the northwest and northeast portions of the region. In the Gulf of221

California, in the Southwest portion of the CONUS domain, close to the coast are numerous points222

of high CV for sensible heat flux and the region as a whole has large loss of information for latent223

heat flux. Near the Great Salt Lake there is also high variability loss relative to the mean for both224

fluxes.225

b. Homogenization Across Scales226

While the majority of this study focuses on one scale of homogenization, 60 km, it is important227

to understand how that choice of scale impacts the results of a simulation. The combined effects228

of changes to the surface fluxes can have a notable impact on simulated precipitation as seen in229

figure 4. Here, we use Evaporative Fraction (EF), defined as 𝐸𝐹 = 𝐿𝐻
𝐿𝐻+𝐻 , to represent the relative230

combination of latent and sensible heat flux. The coarser EF field is apparent in the homogenized231

case as shown in figure 4b. Figure 4c shows the consequences of this difference through the232

change in cumulative precipitation between the two cases. Significant differences in the amount233

and location of precipitation are clear, with the spatial scale of the differences in the central234

United States on the order of 100 km, and differences in rainfall up to 50 mm. Some regions,235

for example Western Mexico near the Gulf of California, have significantly greater quantity and236

spatial coverage of rainfall in the homogenized simulation. Differences in EF in this region are237

also apparent between the two simulations. This, however, represents only one simulation and as238

such a more serious discussion and analysis of these phenomenon are reserved for the full summer239

analysis.240

The changes in precipitation that we observe due to the 60 km homogenization do not hold across244

all scales. We use this difference in precipitation changes to assess the scaling of atmospheric245

impact and how it relates to the scale of information loss from homogenization. To quantify the246

changes in precipitation, we use root mean squared difference (RMSD) computed as 𝑅𝑀𝑆𝐷𝑃 =247 √︃
Σ(𝑃𝑋−𝑃3)2

𝑁
where 𝑁 is the total number of points, 𝑃𝑋 is the total cumulative precipitation at248

some homogenization scale 𝑋 and 𝑃3 is the precipitation from the full resolution 3 km model.249

Figure 5a illustrates how the 6 different homogenization scales change the sensible heat flux over250

part of the Eastern United States including the southern Great Lakes. The spatial variability of251

sensible heat flux across CONUS decreases as the homogenization scale increases, signifying a252
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Fig. 4. Comparison between the heterogeneous (3 km; a) and homogenized (60 km; b) noon evaporative

fraction as well as the difference in cumulative precipitation between these two cases (c) for the second 24 hour

period in a 48 hour simulation that began on 2023-07-07

241

242

243

loss of information, and the deviation of the cumulative precipitation from the heterogeneous case253

increases. These changes are inverses of each other and are visible in figure 5b, illustrating that loss254

of spatial variability in the surface flux is closely related to errors in resulting precipitation. Both the255

loss of spatial variability and the change in RMSD are greatest at smaller scales of homogenization,256

whereas the differences between larger homogenization scales appear less impactful.257

c. Statistics of Precipitation262

Precipitation patterns show significant changes over the three summers analyzed in our simu-267

lations. We also analyze precipitation patterns observed over three summers from 2021 to 2023.268

Figure 6 shows the average summer cumulative precipitation for the 3 km HET case (6a) and the269

60 km HMG case (6b). Close inspection reveals an overall increase in precipitation in the HMG270

case, and figures 6c and 6d, which show the difference between the two sets of simulations and the271

percent difference (spatially smoothed), confirms this fact. The homogenized cases exhibit a mean272

increase in summer cumulative rainfall over land of almost 25 mm or 17% and median increases of273

14 mm or 9.5%. The discrepancies between the spatial means and medians are explained largely274
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Fig. 5. Images showing the change in sensible heat flux (H) resolution across different homogenization scales

in the eastern United States (a), and in (b) the resulting changes in the spatial standard deviation of sensible heat

flux (in red; left axis) and the root mean squared difference of precipitation (in blue; right axis) by homogenization

scale

258

259

260

261

explained by the significant outliers, most notably the region of Mexico, California, New Mexico275

and Arizona near the gulf of California where the rainfall from the North American Monsoon is276

nearly doubled.277

While the changes to the North American Monsoon are the most clear impact of homogenization,278

there are very significant changes to precipitation patterns in other parts of the domain. Most of279

the Northeastern portion of the domain, in particular north of the Great Lakes but also including280

the Mid-Atlantic and New England coastline, also experiences significant increases in precipitation281

under the 60 km HMG case. With increases on the order of 100 mm and mean precipitation on282

the order of 300 mm in the 3 km HET case, the change is clearly substantial. Parts of the West283
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Fig. 6. Precipitation from the second 24 hour period of the 48 hour simulations, accumulated over each of

the summers (JJA) and then averaged across the 3 summers for the 3 km (a) and 60 km (b) simulations. The

difference in precipitation between the two cases is also shown (c) as well as the difference as a percentage of the

mean total summer precipitation for the 3km case (d)

263

264

265

266

Coast, while experiencing rather low total precipitation, still see significant percentage changes in284

precipitation.285

Patterns across the rest of the domain are weaker and a bit less clear, however. The Mountain West,286

especially around the Great Salt Lake, has weaker, albeit still significant increases in precipitation287

due to homogenization. The inland portion of the Eastern United states has significant changes288

in precipitation, but changes do not have high spatial coherence, implying that changes are either289

local and small scale, and therefore difficult to interpret with this type of analysis, or that the290

observed patterns are largely spatial noise. The Southeastern coastal United States, including291

Florida, is one of the few regions on the map where a large scale persistent decrease in rainfall due292
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Fig. 7. Comparison of the cumulative precipitation to MSWEP precipitation for the 3km (a) and 60km (b)

case. Figure shows the absolute bias (c) and rmse (d) in daily mean simulated precipitation when compared

with MSWEP for each simulation day for the Heterogeneous (3 km; HET) case, represented by an unfilled

circle, and for the Homogeneous (60 km; HMG) case, represented by filled circles. Circles in red indicate worse

performance in the HET case, and circles in blue indicate worse performance for the HMG case

300

301

302

303

304

to homogenization may be occurring. It is notable that the regions with significant, or potentially293

significant changes (Western Mexico, the Great Lakes region, Mid-Atlantic/New England the Great294

Salt Lake, Central California, Mountain West, and inland Texas) have a significant loss of variability295

in both latent and sensible heat fluxes due to homogenization (refer back to figures 3a and 3b).296

There appears, from these two figures, to be a relationship between lost variability and the resulting297

change in precipitation. Additional exploration of some of these regions and the observed changes298

will be conducted in the following sections.299

The simulated patterns of precipitation can be further compared to observed precipitation using305

the MSWEP dataset outlined in section 2c. Overall, results show that while both the HET and306
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HMG case have significant errors compared with MSWEP, the errors are increased with the307

homogenization in the HMG case. Figure 7a and 7b show the biases of the heterogeneous and308

homogeneous case respectively. The bias is overall larger in the homogeneous case. Notably, the309

heterogeneous case appears to make fairly unbiased predictions of the North American Monsoon310

in Mexico and the Southwestern United States unlike the homogeneous case. Homogenization311

also appears to increase biases in New England and the Great Lakes region. Examining each of312

the 257 simulation days individually confirms the persistence of the observed increases in error.313

Figure 7c shows the absolute bias of the HET case (black open dots) and the HMG case (colored314

dots). When looking at the observed RMSE, the pattern is even more consistent with the HMG315

case almost always having more error than the HET case. Only 17 out of the 257 days show that316

homogenization reduces the error in figure 7d.317

d. Changes in Atmospheric Moisture318

To further understand the observed changes in precipitation, as well as other changes to the328

earth system, the difference between the 3 km HET to 60 km HMG case is explored for additional329

environmental variables. Perhaps the most notable, and spatially universal, change that occurs as330

a result of the homogenization is that the land becomes broadly wetter, at least in its coupling to331

the atmosphere. Figure 8c shows that daily mean EF increases across virtually the entire domain332

due to homogenization, with the most significant increases on the order of 10% close to bodies of333

water, both small lakes and coastlines, and the largest increases again along the Gulf of California.334

This increase is largely due to an increase in latent heating, and a very slight decrease in sensible335

heating. A possible explanation for this is that homogenization of comparatively drier areas with336

wet areas and bodies of water allows for water to be removed more easily from the wetter areas.337

The moisture being removed from the wet areas in the HET case only directly impact the overlying338

atmosphere, which decreases the vertical moisture gradient and dampens the latent heating. When339

homogenized, the moisture is spread across a larger and dryer domain, instantaneously moves to340

dry land, and no longer acts significantly to suppress future latent heating. It is worth noting that341

the locations with the largest changes in EF were also some of the regions with the lowest EF in342

figures 8a and 8b, and therefore were likely in domains where evaporation is water limited rather343

than energy limited regime.344
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Fig. 8. Daily mean Evaporative fraction EF over the 3 summers at 60km resolution for the 3 km HET case

(a) and the 60 km HMG case (b). The difference between them is shown in (c), which also shows the bounding

boxes for 7 domains of interest in this study. A boxplot for each domain, including LND representing all land,

shows the distribution of the percent change in domain mean EF between the HET and HMG case over the 257

study periods in figure (d). Larger values indicate an increase due to homogenization. Colored bars (blue and

red) indicate the median over the 257 study periods, filtered to only include the timestep preceding a rainfall

event in the homogenized case. Blue bars indicate a lower median than the full analysis (orange bar), or that

before rainfall the difference between HET and HMG was smaller, and red bars indicate a higher median than

over the full analysis, or that before rainfall the difference between HET and HMG tended to be larger.

319

320

321

322

323

324

325

326

327

To better examine changes in EF, as well as changes in other phenomena, we divide the domain351

into 7 regions, in addition to the entire landmass (LND), as seen in figure 8c. The boxplot in352
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figure 8d shows the distribution of the percent change with homogenization in daily, domain-353

wide mean EF throughout the three summers for the domains defined in 8c. This confirms many354

of the observations made previously, and shows that the observed trends hold throughout time.355

Notably, the drier GSL, CAL and MEX domains also show greater variability throughout the season356

in simulated changes to EF due to homgenization. The figure also helps answer the question of357

whether the increase in EF is primarily a result of the increased precipitation or a cause of increased358

precipitation. The colored lines in figure 8d show the median of the change with homogenization in359

domain-wide mean EF throughout the three summers, but selecting only for times in the simulation360

immediately preceding precipitation events. That is, they show median change in EF before either361

the HET or HMG case simulate precipitation. It is clear, looking at the whole domain in LND, that362

the overall increase in EF occurs before any precipitation. For some domains, notably GSL and363

CAL, the increase is marginal immediately preceding precipitation events although it is important364

to note that the sample size of ”pre-rain” timesteps in these domains is poor due to low summer365

rainfall.366

Other atmospheric characteristics are useful to further understand water cycle impacts of homog-367

enization. Homogenization causes an overall increase in precipitable water (PW) in the atmosphere,368

especially over the west coast and gulf of California, with smaller increases in the GRL region369

and GSL region (figure 9a. Notably, the increase in PW over the West Coast does not translate to370

significant increases in precipitation (figure 6c) likely due to the low overall atmospheric moisture371

availability in this region. All regions with significant PW increases overlap with regions of sig-372

nificant EF increases seen in figure 8, and is likely a direct consequence. Notably, before rainfall373

events this abundance of PW is not necessarily observed, with decreased PW in the HMG case374

before rainfall events across all domains. The increase in EF also translates to similar changes in375

2 meter relative humidity (𝑅𝐻2𝑚), and the increase is relatively consistent except for a decrease in376

the pre-rainfall events in the dry low-rain GSL and CAL domains and a decrease in 𝑅𝐻2𝑚 observed377

for all situations in Florida, which also saw the smallest increase in PW in the HMG case when378

compared to the HET case. Low level (300-2000 m) Mid level (2000-6000m) and High Level379

(6000m +) clouds show a large degree of temporal variability in the boxplots and also the most380

significant changes as a percent change in mean cloud coverage. Low level cloud cover increases381

across the entire domain, with the exception of southern Florida, with the greatest increases in382
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Fig. 9. From left to right in each subfigure, shows the daily mean of a variable over the 3 summers at 60km

resolution for the 60 km HMG case (left). The difference between the two cases (60 km HMG - 3 km HET)

is shown to the right. A boxplot for each domain defined in figure 8c analogous to figure 8d. Information is

shown in each subfigure for precipitable water (PW) (a), 2 meter relative humidity (𝑅𝐻2𝑚), (b), 2 meter relative

humidity (𝑇2𝑚), (c), low cloud cover between 300m and 2000m (𝐶𝐶𝑙𝑜𝑤), (d), mid level cloud cover between

2000m and 6000m (𝐶𝐶𝑚𝑖𝑑), (e), and high level cloud cover above 6000m (𝐶𝐶ℎ𝑖𝑔ℎ), (f)
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346

347

348

349

350
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cloud cover over the West Coast and great lakes region. Increases are also present in the South,383

although this is less significant as a percent change as summer cloud cover is generally high there.384

Notably much of this increase appears to be during or after rainfall events, as is clear from the right385

portion of figure 9d. Change in Mid and High level clouds is less spatially consistent, although the386

MEX region does experience clear increases. In the pre-rain case, the HMG case sees significant387

decreases in mid and high level cloud cover across all domains. Overall, changes in PW, low level388

cloud cover, and 𝑅𝐻2𝑚 appear fairly consistent with simulated EF in figure 8.389

e. Mesoscale Kinetic Energy390

At first examination, the results of an increase in precipitation and cloud cover appear to defy391

previous LES studies that show decreases due to the effect of homogenization on mesoscale and392

sub-mesoscale motion. The indirect changes of flux averaging to mean surface fluxes and EF are393

provided as an explanation. This, however, begs the question of what happened to heterogeneity394

driven atmospheric flows. To understand this problem, we use integrated mesoscale kinetic energy395

(MsKE) applied over 60 km boxes in the domain, which we define as396

𝑀𝑠𝐾𝐸 =

∫ 𝑧𝑡𝑜𝑝

0

1
2
(𝑢′𝑢′+ 𝑣′𝑣′+𝑤′𝑤′)𝜌𝑑𝑧 (1)

where 𝜌 is the air density, 𝑧𝑡𝑜𝑝 is the top of the simulated atmosphere, the overline represents400

spatial averaging over the 60km box, and 𝑢′,𝑣′,𝑤′ represent the spatial mean removed velocities401

in the west-east, north-south and vertical directions respectively. The MsKE can also be viewed402

as a dispersive kinetic energy analogous to the dispersive momentum fluxes (and kinetic energy)403

used in previous boundary layer literature (Akinlabi et al. 2022). Although the spatial averaging404

of this procedure is a bit different than temporal averaging that would be appropriate in boundary405

layer contexts. This metric should capture mesoscale motions of a scale less than 60km; it will406

additionally capture mesoscale motion due to storms, however it should be less impacted by larger407

scale fronts and synoptic scale phenomena. Since most heterogeneity-driven flows are primarily408

active within the boundary layer, especially near the surface, we additionally define an 𝑀𝑠𝐾𝐸𝑙𝑜𝑤,409

which adjusts the limits of integration to only cover the first 5 pressure levels in the WRF simulation410

(up to approximately 400 m). This lower level 𝑀𝑠𝐾𝐸𝑙𝑜𝑤 will likely be less dominated by larger411

scale storm cells.412
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Fig. 10. Subfigure information as in figure 9 for low level vertically integrated mesoscale kinetic energy,

approximately 400m and below, (𝑀𝑠𝐾𝐸𝑙𝑜𝑤), (a), and for for total vertically integrated mesoscale kinetic energy

(𝑀𝑠𝐾𝐸), (b)

397

398

399

MsKE, particularly 𝑀𝑠𝐾𝐸𝑙𝑜𝑤, largely conforms with our expectation. Homogenization causes a413

decrease in 𝑀𝑠𝐾𝐸𝑙𝑜𝑤 on the order of 10% across almost the entire domain in figure 10a. Notable414

exceptions to the trend is part of the GRL Great Lakes region and the Gulf of California (MEX),415

although the significant increases in rainfall and convective storms in these regions are the likely416

drivers of these differences. When looking at total magnitude of change, the central and northern417

west coast and the coastlines of the Great Lakes experience the greatest decrease in mesoscale418

activity in the ABL due in the HMG case compared to HET, which is likely a signature of the419

reduction of sea and lake breezes respectively. Interestingly, these same coastlines also appear in the420

signature of changes in 2 meter temperature (𝑇2𝑚) in figure 9c, where they show significant increases421

in temperature (2-3 ◦𝐶) due to homogenization. This change is likely caused by a combination422

of reduced sea and lake breezes, clear from the decrease in 𝑀𝑠𝐾𝐸𝑙𝑜𝑤, as well as an increase in423

heating over the bodies of water caused by homogenization. The temperature increase over ocean424

is not a focus of this study, but likely occurs for reasons analogous to the moisture increase over425

land; the heat from the land ”instantly” transfers to over the ocean without dampening the heat426

flux over land sufficiently. Although, given that the increased temperature over land would also427
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dampen the heat flux over land, it is unlikely the primary reason for the temperature increases and428

the changes to cooling sea/lake breezes are likely the primary driver.429

The same ”cooling” effect, while present on the coastlines along the Gulf of Mexico and the430

East Coast, is significantly weaker, likely as these waters are known to be warmer due to the Gulf431

Stream ocean current coming from the south. These regions, however, still experience changes432

to the breeze signature of 𝑀𝑠𝐾𝐸𝑙𝑜𝑤. TEX and FLR see highly variable changes to 𝑀𝑠𝐾𝐸𝑙𝑜𝑤433

due to homogenization through time, with a wide distribution of observed changes and median434

reductions around 10%. Notably, however, when we select only for pre-rain events, homogenization435

yields a 30 - 40% median decrease in 𝑀𝑠𝐾𝐸𝑙𝑜𝑤 and likely sea breezes. In Florida especially, sea436

breezes are known to cause the initiation of shallow and deep convection (Miller et al. 2003;437

Crosman and Horel 2010; Hock et al. 2022). Dampened sea breezes are a likely explanation for438

the decreases in precipitation (and low level cloud cover) in Florida under the HMG case that439

otherwise defy the continental trends of increased precipitation and cloud cover (see figures 6c, 6d440

and 9d). More broadly, pre-rain 𝑀𝑠𝐾𝐸 and 𝑀𝑠𝐾𝐸𝑙𝑜𝑤 is either unchanged or significantly reduced441

due to homogenization in all domains, lending further support to the hypothesized suppression442

of mesoscale motion from flux homogenization. In non-coastal regions, the homogenization also443

likely reduces the activity of the most powerful plume updraft structures, as the tail of the sensible444

heat flux distribution is removed. Overall changes in the fluxes could also cause some of the445

observed changes, although are unlikely to explain all the phenomena.446

4. Discussion447

a. Major Effects of Flux Averaging: Interplay between EF and MsKE448

The two most direct, and universal, impacts of flux averaging across the three summers of analysis449

appear to be increases in evaporative fraction EF over CONUS, and a decrease in mesoscale kinetic450

energy in the lower boundary layer (𝑀𝑠𝐾𝐸𝑙𝑜𝑤) with only highly active storm zones defying the451

trend. We use 𝑀𝑠𝐾𝐸𝑙𝑜𝑤 as a proxy the types of mesoscale motions that heterogeneity is known452

to enhance, including secondary circulations, plumes, land-lake, land-sea, and land-land breezes.453

Examining only the 𝑀𝑠𝐾𝐸𝑙𝑜𝑤 or only the 𝐸𝐹 changes between the 60 km HMG and 3 km HET454

flux averaging cases is insufficient to explain the observed trends in clouds and precipitation;455

decreases in heterogeneity driven flows are expected to be correlated with decreases in cloud456
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production and precipitation, however much of CONUS shows an average increase. Similarly,457

increased moisture in the atmosphere due to increased EF is widely observed across CONUS, but458

this increased moisture fails to translate to increased precipitation, high, or mid level clouds over459

much of CONUS and decreased precipitation is actually observed in locations such as Florida. It460

is possible that the increase in atmospheric moisture in the HMG case also further smooths the461

temperature field and compounds decreasing MsKE. Decreasing sensible heat flux, and overall462

heating from the change in EF, is also likely a contributor to the changes (or lack thereof) in regions463

that are not moisture limited. Changes in energy from heat, however, cannot perfectly explain the464

phenomena either, as evidenced by the lack of change, or slight increase, in the temperature field465

over most of the domain.466

Many of these phenomena can be understood as an interplay between the increasing moisture, EF,467

and decreasing boundary layer flow activity. For much of the domain, where no sustained increase468

in precipitation is observed (figure 6), the moisture supply is increased while the mesoscale motion469

that promotes convective initiation decreases. When averaged over the 257 simulation days, this470

results in no net precipitation increases. This does, however, result in a continuous decrease in the471

accuracy of precipitation events each day (figure 5c) as, in any given day, moisture availability,472

sensible heating, or convective initiation may be a more important factor in the spatiotemporal473

patterns of precipitation. There are locations where the increase in moisture availability is a474

deciding factor in precipitation events. These appear to be mostly locations with low average EF,475

including the northern Great Lakes (GRL) and gulf of California (MEX) (see figure 8a) where476

sustained increases in precipitation occur. In Florida and parts of the Gulf Coast and East Coast,477

however, EF is very high as is moisture availability. The deciding factor for spatiotemporal patterns478

of many precipitation events in these regions, therefore, may be whether sufficient flow from sea479

breeze events exists to promote movement of that moisture beyond the level of free convection to480

trigger convective precipitation. Change in 𝑀𝑠𝐾𝐸𝑙𝑜𝑤 also likely plays a role, along with changes481

to sensible heating as more energy is partitioned into moisture flux, in the lack of changes in482

precipitation in other regions of the domain. The reduced energy from heating and from reduced483

mesoscale heterogeneity driven flows prevents the increased moisture from causing precipitation.484

Additionally, all of these factors are compounded by where the homogenization most changes the485

fluxes by decreasing variability (figure 3). Much of the Midwest (part of CTL), for example,486
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has very low spatial variability in latent and sensible heat fluxes, and as a result there is little487

signature of change due to homogenization in EF, precipitation, or 𝑀𝑠𝐾𝐸𝑙𝑜𝑤. The non-response,488

in the precipitation field at least, to homogenization in inland domains could also be a partial489

consequence of a feedback with precipitation. Studies show that, under breeze like circulations490

and secondary circulations, cloud formation and precipitation preferentially occurs over the drier,491

warmer area (Avissar and Liu 1996; Simon et al. 2021; Lee et al. 2019; Rochetin et al. 2017; Klein492

and Taylor 2020). This will, accordingly, result in a homogenization of the field as the drier area493

becomes wet. In some situations, this could even cause the flux field to be more homogeneous494

in the HET case than the HMG case. While the impacts of aphysical changes in moisture caused495

by homogenization are clear, more work needs to be done to understand the role of heterogeneity496

driven flows and mesoscale kinetic energy of the boundary layer, which are significantly reduced497

across the domain and have a clear impact in the Southeast, in land-atmosphere coupling.498

b. Applications to Earth System Modelling and Coarse Resolution Weather Prediction499

The results show that significant care should be taken when homogenizing a finer resolution500

surface (land and ocean) with a coarser resolution atmosphere, whether this occurs through an501

explicitly higher resolution grid or an effectively higher resolution grid via an LSM tiling scheme.502

Errors, biases, and changes in precipitation, cloud cover, temperature, and atmospheric moisture503

are especially concerning in highly variable regions. This is most significant when bodies of water504

(lakes, rivers and ocean) are homogenized with land tiles. In addition to the high gradients in these505

areas, bodies of water have no capacity to dry out, like a wet land homogenized with dry land could,506

promoting a continual release of moisture that is, by virtue of the homogenization, immediately507

transported from over open water over to dry land where it no longer works to suppress more508

evaporation from the open water. Surface-atmosphere coupling should ideally be designed in a509

way to avoid having water and land under the same atmospheric grid. If they are averaged together,510

active attempts need to be made to prevent overestimation of resulting evaporation.511

Additionally, the role of mesoscale and sub-mesoscale boundary layer activity driven by hetero-512

geneity needs to be properly parameterized. Biases in coastal temperatures as well as precipitation513

in energy limited regions with significant gradients (Florida) can occur if it is not properly consid-514

ered. Results from this work and the literature suggest that significant changes in spatiotemporal515
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patterns of precipitation and cloud development may occur on the daily scale, even if they don’t516

occur on the seasonal scale, which is certainly relevant for NWP and could have other effects517

relevant for the climate modeling community. Additional investigation, however, is necessary518

to fully evaluate the impact on specific events and for shorter time scales. Any future parame-519

terization of sub-grid heterogeneity-driven also needs to consider that models can only resolve520

heterogeneity-driven circulations when the heterogeneity is on the order of 4 times the grid scale521

(Zheng et al. 2021). Model parameterizations would also benefit from considering the explicit522

spatial organization of the sub-grid heterogeneity, which is often neglected in tiling schemes(Fisher523

and Koven 2020), as larger scale circulations are more likely to occur only with sustained spatial524

heterogeneity. Two column models have strong potential to represent structured mesoscale flows525

(Waterman et al. 2024), however they are computationally expensive. Integrating these ideas into526

multi-plume mass flux additions to boundary layer schemes (Sušelj et al. 2013; Witte et al. 2022)527

has potential for more computationally efficient representation, although such models have yet to528

be explored in detail or broadly applied.529

c. Challenges and Considerations530

There are a number of challenges and limitations of the study that are important to consider531

when evaluating the results. In both the HET and HMG case, there was a persistent observed532

energy balance residual around -2.5𝑊𝑚−2 in the HET case and -7𝑊𝑚−2 in the HMG case, which533

may influence the results. It is worth noting, however, that due to the 48 hour simulation length,534

the sea surface temperatures were set to non-updating, which means that ocean water heating is535

not accounted for in the energy balance and is likely where this ”missing energy” could go. As536

mentioned previously, models require heterogeneity scales on the order of 4 times the atmospheric537

grid scale to properly resolve many heterogeneity driven flows. As such, the simulations in this538

study do not properly consider smaller scale secondary circulations which will likely be relevant539

for land-atmosphere coupling, especially in finer resolution NWP schemes. Long term effects540

are also not considered as part of this study. The 48 hour simulation time scale is useful for541

more meaningful and direct comparison between the heterogeneous and homogeneous cases, but542

it admittedly does not account for long term effects, such as the ”memory” of the soil moisture to543

the precipitation events which can be very impactful for seasonal simulations (Knist et al. 2020).544
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In addition, the role of MsKE requires more thorough exploration. MsKE also captures back-545

ground perturbations in addition to heterogeneity driven flows, and larger scale dynamics and546

convection. The background perturbations are likely low based on low observed baseline values547

of MsKE. Further examination of MsKE under weak synoptic scale forcing (i.e. clear sky, low548

background wind) conditions would both allow for analysis that removes the larger scale convec-549

tive storm imprint on MsKE as well as highlight the days where heterogeneity driven flows are550

expected to have the greatest impact on the atmosphere. Initial work in this area is promising,551

however deeper analysis in a subsequent publication is necessary.552

The study primarily focused on homogenization of the surface fluxes. It is worth noting, however,553

that two other forms of homogenization that occur in ESMs were not included here. Studies have554

shown that the smoothing of topography at the larger grid scales has significant impacts on sub-grid555

scale motion, precipitation, and cloud development (Knist et al. 2020; Zhao and Li 2015; Wagner556

et al. 2015). ESMs, due to the coarser atmospheric grid, often pass coarse resolution precipitation557

back to the land, whereas these simulations maintain the 3 km resolution precipitation. Previous558

work has shown that, in some places, rainfall and other meteorological characteristics can drive a559

significant portion of the surface heterogeneity (Simon et al. 2021; Guillod et al. 2015; Li et al.560

2020). Studies also show precipitation can have high spatial bias, especially in heterogeneous land561

surface regimes (Avissar and Liu 1996; Simon et al. 2021; Lee et al. 2019).562

5. Conclusion563

In this study, we run 48 hour WRF simulations for every day in the summers (JJA) of 2021, 2022,564

and 2023 over CONUS at 3 km, with a default heterogeneous case (HET) and a homogeneous565

case (HMG) where the surface fluxes and skin temperature are homogenized to 60 km resolution566

at every time step. We separately examined how choosing different homogenization scales would567

affect one, 48 hour simulation period. The homogenization is analogous to the homogenization568

that occurs in ESMs when LSM tiling schemes or higher resolution land and ocean models have569

surface fluxes homogenized to an overlying atmosphere. Results, overall, show dramatic changes570

in cloud production and precipitation over the three summers due to homogenization driven by571

two often counteracting phenomena. The homogenization between wet and dry areas, particularly572

open water (lakes, rivers, ocean) and land, causes an increase in moisture fluxes from the wet area573
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and a resulting increase in evaporative fraction EF. The changes to EF increase the moisture in574

the boundary layer significantly, promoting increased precipitation and cloud development. The575

homogenization also causes a reduction in the strength of mesoscale flows and convective plumes576

in the ABL, represented by 𝑀𝑠𝐾𝐸𝑙𝑜𝑤, likely due to a dampening or elimination of flows driven by577

heterogeneity such as sea/lake breezes, and secondary circulations. The reduction of these flows578

causes a decrease in cloud development and precipitation. Overall, the increase in EF appears579

to be the dominant mechanism effecting precipitation changes broadly. This is especially true in580

dry moisture limited regions, such as the Gulf of California during the North American Monsoon581

season, and north of the Great Lakes, which experience a nearly 100% (200 mm+) and 50% (50-582

100 mm) increase respectively in mean cumulative summer precipitation in the HMG case when583

compared to the HET case. For most of the domain, the increase in moisture availability, clear in584

maps of low level clouds, 𝑅𝐻2𝑚, and 𝑃𝑊 , does not translate to a strong increase in rainfall likely585

due to a slight decrease in sensible heating as well as a change in mesoscale flow activity in the586

boundary layer, 𝑀𝑠𝐾𝐸𝑙𝑜𝑤. While decreasing sensible heating implied by the increased EF may587

be a primary reason, this is unlikely to explain it alone as the field of temperature appears largely588

unaffected or slightly increased by homogenization outside of coastal regions where increases are589

more significant and counter-intuitive to the changes in EF. Regions with high moisture availability,590

such as the Florida peninsula, however, experience decreases in precipitation with homogenization591

likely due to the reduced opportunities for convective initiation from dampened sea breezes. Results592

overall show that careful consideration of surface heterogeneity is necessary for coupling of the593

surface and atmosphere in ESMs and coarse grid NWP. This consideration is particularly important594

in regions where fluxes from open water are homogenized with fluxes over land, and where high595

spatial gradients are present in the flux fields.596
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